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Abstract

Background: Accurate specimen analysis of skull base
tumors is essential for providing personalized surgical
treatment strategies. Intraoperative specimen interpreta-
tion can be challenging because of the wide range of skull
base pathologies and lack of intraoperative pathology re-
sources.

Objective: To develop an independent and parallel in-
traoperative workflow that can provide rapid and accurate
skull base tumor specimen analysis using label-free optical
imaging and artificial intelligence.

Methods: We used a fiber laser–based, label-free, non-
consumptive, high-resolution microscopy method (< 60
seconds per 1 × 1 mm2), called stimulated Raman his-
tology (SRH), to image a consecutive, multicenter cohort
of patients with skull base tumor. SRH images were then
used to train a convolutional neural network model using
3 representation learning strategies: cross-entropy, self-
supervised contrastive learning, and supervised contrastive
learning. Our trained convolutional neural network models
were tested on a held-out, multicenter SRH data set.

Results: SRH was able to image the diagnostic features
of both benign and malignant skull base tumors. Of the
3 representation learning strategies, supervised contrastive
learning most effectively learned the distinctive and diag-
nostic SRH image features for each of the skull base tu-
mor types. In our multicenter testing set, cross-entropy
achieved an overall diagnostic accuracy of 91.5%, self-
supervised contrastive learning 83.9%, and supervised con-
trastive learning 96.6%. Our trained model was able to
segment tumor-normal margins and detect regions of mi-

Published as journal article in Neurosurgery 90 (6), 758-767. Corre-
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croscopic tumor infiltration in meningioma SRH images.
Conclusion: SRH with trained artificial intelligence

models can provide rapid and accurate intraoperative anal-
ysis of skull base tumor specimens to inform surgical
decision-making.

Keywords: Skull base tumors, contrastive learning, ar-
tificial intelligence, stimulated Raman histology, automated
diagnosis, tumor margin delineation

1. Introduction
Optimal skull base neurosurgery requires personalized

surgical treatment strategies based on clinical, radiograph-
ical, and pathological data. Skull base lesions are diverse
and span the full pathology spectrum, including inflam-
matory, infectious, and neoplastic diseases. Look-a-like
lesions and uncommon radiographical or clinical features
can lead to diagnostic errors and potentially increase surgi-
cal morbidity [1, 2, 3, 4]. In addition to tumor diagnosis,
rapid microscopic assessment of tumor resection cavities
for residual tumor burden could increase gross total resec-
tion and reduce tumor recurrence rates. Residual tumor bur-
den is the major cause of tumor recurrence in both benign
and malignant skull base tumors [5, 6]. An intraoperative
pathology workflow that could provide rapid and accurate
evaluation of skull base surgical specimens has the poten-
tial to guide personalized treatment strategies and improve
surgical outcomes.

Our standard of care for intraoperative assessment of sur-
gical specimens is based on hematoxylin and eosin (H&E)
staining of processed surgical specimens and requires inter-
pretation by a board-certified pathologist. Tissue processing
is extensive, requiring transport, staining, sectioning, and
mounting of the specimen. The turnaround times for in-
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Figure 1. Stimulated Raman histology (SRH) and contrastive representation learning framework. A, Clinical SRH imager used for intra-
operative imaging of fresh brain tumor specimens. The surgical specimen is loaded into a premade microscope slide. The SRH imager is
operated by a single technician with minimal training through a simple touch-screen interface with prompted directions. SRH images are
acquired by imaging at 2 Raman shifts: 2845 and 2950 cm-1. Lipid-rich regions (eg, myelinated white matter) demonstrate high SRS signal
at 2845 cm-1 because of CH2 symmetric stretching in fatty acids. Cellular regions produce high 2930 cm-1 intensity and large 2930:2845
ratios to high protein and nucleic acid content [7]. The subtracted image highlights cellularity and nuclei. A virtual hematoxylin and eosin
(H&E) color scheme is applied to transform the raw stimulated Raman scattering images into SRH images for clinical use and pathological
review. B, Contrastive representation learning involves selecting a pair of positive image examples. In the self-supervised setting, this
pair is generated by sampling 2 random transformations from a set of transformations, T , such as image blurring (t1) or flipping (t1), and
applying the transformations to a single image, x, to get x1 and x2. Both images undergo a feedforward pass through an SRH feature
extractor, which is a convolutional neural network. x1 and x2 now have normalized vector representations, z1 and z2, which can then
be compared using a similarity metric on the unit hypersphere. The objective of contrastive learning was to make the similarity metric
between positive examples large and negative examples small. This corresponds to placing representations of positive pairs near each other
and pushing negative pairs away. In the case of supervised contrastive learning, positive examples are pairs from the same diagnostic class
and negative examples are from all other classes. C, Finally, after training our SRH feature extractor using contrastive learning, we train a
linear classification layer to provide a probability distribution over our output classes.

traoperative specimen interpretation (20 - 90 minutes) dis-
courage routine use in skull base neurosurgery, particularly
for tumor margin assessment [8]. Moreover, the pathology
workforce is contracting, with an overall reduction of 18%
between 2007 and 2017 [9, 10]. In this study, we propose
an alternative workflow for rapid interpretation of surgical
specimens using optical imaging and artificial intelligence
(AI).

Stimulated Raman histology (SRH) is a rapid, label-free,
high-resolution, optical imaging method used for intraop-
erative evaluation of fresh, unprocessed tissue specimens
[11, 7]. We have previously shown that SRH combined
with AI models can achieve human-level performance for
the intraoperative diagnosis of the most common brain tu-

mor subtypes and recurrent primary brain tumors [12, 13].
Our models detect cytological and histomorphological fea-
tures in brain tumors to provide near real-time diagnoses
(< 2 minutes) without the need for tissue processing or hu-
man interpretation.

In this study, we aim to develop an integrated computer
vision system for rapid intraoperative interpretation of skull
base tumors using SRH and AI. To improve on our previ-
ous methods, we applied a new AI training technique, con-
trastive representation learning, which boosted our model’s
ability to detect diagnostic features in SRH images. We
show that this model can effectively segment tumor-normal
margins and detect regions of microscopic tumor infiltration
in grossly normal surgical specimens, allowing for robust
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margin delineation in meningioma surgery.

2. Methods
2.1. Study Design

Study objectives were to (1) determine whether SRH
can capture the diagnostic features of skull base tumors,
(2) develop an AI-based computer vision system that com-
bines clinical SRH and deep neural networks to achieve
human-level performance on the intraoperative classifica-
tion of skull base tumors, and (3) demonstrate the feasi-
bility of using our model to detect microscopic tumor in-
filtration in meningioma surgery. After Institutional Re-
view Board approval (HUM00083059), this study began on
June 1, 2015. Inclusion criteria were the following: (1) pa-
tients with planned brain tumor resection, including skull
base surgery, at Michigan Medicine (UM) and New York
University; (2) subject or durable power of attorney able to
give informed consent; and (3) subjects in whom there was
additional specimen beyond what was needed for routine
clinical diagnosis. We then trained and validated a bench-
marked convolutional neural network (CNN) architecture
(ResNets[14]) on the classification of fresh surgical speci-
mens imaged with SRH. CNN performance was then tested
using a held-out, multicenter (UM and NYU) prospective
testing SRH data set.

2.2. Stimulated Raman Histology

All images were obtained using a clinical fiber
laser–based stimulated Raman scattering (SRS) microscope
[12, 15]. The NIO Laser Imaging System (Invenio Imaging,
Inc) is delivered ready to use for image acquisition and re-
quires a single technician to operate with minimal training.
Viewing SRH images can be performed directly in the oper-
ating room or remotely through medical center radiographic
system or cloud-based viewer. Fresh, unprocessed, surgical
specimens are excited with a dual-wavelength fiber laser as
specified in our previous publications [7, 12]. These speci-
fications allow for imaging at Raman shifts in the range of
2800 to 3130 cm-1. The NIO Imaging System was used to
acquire all images in the testing set [12]. For SRH, 2850 and
2950 cm-1 are the wavenumbers used to acquire the 2 chan-
nel images Lipid-rich regions (eg, myelinated white mat-
ter) demonstrate high SRS signal at 2845 cm-1 because of
CH2 symmetric stretching in fatty acids. Cellular regions
produce high 2930 cm-1 intensity and large signal 2930 to
2845 ratios to high protein and nucleic acid content. A vir-
tual hematoxylin and eosin (H&E) color scheme is applied
to transform the raw SRS images into SRH images for clin-
ical use and pathological review.

SRH combined with AI is an off-label use of the NIO
Laser Imaging System. The AI and algorithms discussed
are for research purposes only and have not been reviewed

or approved by the US Food and Drug Administration.

2.3. Image Dataset and Data Preprocessing

SRH imaging was completed using 2 imaging systems:
a prototype clinical SRH microscope [7] and the NIO Imag-
ing System. All collected clinical specimens were imaged
in the operating room using our SRH imagers. In addi-
tion, we used cadaveric specimens of normal tissue (brain,
dura, and pituitary gland) to improve our classifiers abil-
ity to detect normal tissue and avoid false-positive errors.
Specimens compromised by hemorrhage, excessive coagu-
lation, or necrosis were excluded. For image preprocessing,
the 2845 cm-1 image was subtracted from the 2930 cm im-
age, and the resultant image was concatenated to generate
a 3-channel SRH image (2930 cm-1 minus 2845 cm-1, red;
2845 cm-1, green; and 2930 cm-1, blue). A 300× 300pixel2

nonoverlapping sliding-window algorithm was used to gen-
erate image patches. Our laboratory has previously trained
a neural network model that filters images into 3 classes for
automated patch-level annotation: normal brain, tumor tis-
sue, and non-diagnostic tissue [12, 13]. Normal dura was
included in the nondiagnostic class because it lacks cyto-
logical features (Figure 1).

2.4. Model Training

Only tumor classes with > 15 patients were included:
pituitary adenomas, meningiomas, schwannomas, primary
central nervous system lymphoma, and metastases. Normal
classes included normal brain (gray matter and white mat-
ter) and normal pituitary gland (anterior gland and posterior
gland). Six hundred patients were included in the training
set.

We implemented the ResNet50 CNN architecture with
25.6 million trainable parameters for our SRH feature ex-
tractor [14]. Three loss functions were used for model train-
ing: supervised categorical cross-entropy, self-supervised
contrastive [16], and supervised contrastive [17]. The gen-
eral contrastive loss function is

`contrastive(zx,px,N ) =

− log
exp (sim(zx,px)/τ)∑
n∈N exp (sim(zx,n)/τ)

(1)

where zx = f(X) is the vector representation of image X
after a feedforward pass through the SRH feature extractor,
px is the representation of positive examples for image X ,
and N is the set of negative examples for image X (Fig-
ure 1B). Positive examples can be transformations of the
same image (self-supervised) or different images sampled
from the same class (supervised). The feature extraction
model produces a 2048-dimension feature vector for each
input image, and each feature vector is further projected
down to 128 dimensions before the cosine similarity met-
ric (sim) is computed. Contrastive loss functions have some
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A) Grey matter Neuron Axon B) Pituitary gland (anterior) Acini C) Dura mater Collagen
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Figure 2. SRH of skull base tumors shows cytologic and histoarchitectural features. Diagnostic features of normal skull base parenchyma
and skull base tumors are imaged effectively using SRH. A, Normal grey matter shows pyramidal cell bodies of cortical neurons. Lipid-rich
myelinated axons have high 2845 cm-1 signal and appear white in our virtual H&E color scheme. B, Normal anterior pituitary gland has
acinar histoarchitecture with intact reticulin network. C, Skull base dura is mainly acellular, fibrous tissue with collagenic and elastic fibers.
D, Schwannoma (vestibular schwannoma shown) shows classic spindle cell cytology combined with Antoni A and B histoarchitectural
patterns. E, Pituitary adenomas show monotonous cytology with loss of acinar structure. F, Meningiomas have large nuclei and whorl
patterns throughout the specimen. G, Adamantinomatous craniopharyngiomas are complex specimens and uniquely show wet keratin. H,
Clival chordomas have bubbly, physaliferous cells. I, Chondrosarcomas show chondrocytes embedded in a dense cartilaginous matrix.
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theoretical advantages over cross-entropy (ie, robustness to
label noise), and we hypothesize that contrastive represen-
tation learning is ideally suited for patch-based classifica-
tion. The contrastive learning models were optimized using
stochastic gradient descent, and each model was trained us-
ing a batch size of 176 for 4 days on 8 Nvidia GeForce RTX
2080 Ti graphical processing units (GPUs). After the fea-
ture extraction model training was completed, these features
were classified using a linear classifier trained using cross-
entropy loss (see Figure 1C). Each linear classification layer
was trained using the Adam optimizer and a batch size of 64
for 24 hours on 2 Nvidia GeForce GPUs. We compared our
approaches with a conventional model trained using cross-
entropy and a batch size of 64 for 24 hours on 2 Nvidia
GeForce GPUs.

2.5. Model Testing

We randomly held out 20% of our data as a testing data
set consisting of 118 patients and 489 whole slides. Simi-
lar to our training data preparation, 300× 300 pixel patches
were generated from a whole-slide image, and each patch
underwent a feedforward pass through our trained mod-
els to compute a probability distribution over the output
classes. To compute the whole-slide–level or patient-level
accuracy, we summed the patch-level probability distribu-
tions for each whole slide or patient, respectively. The ag-
gregated probabilities were then re-normalized to compute
the final slide–level or patient-level class probabilities. This
“soft” aggregation of the classification is superior to “hard”
aggregation of the patches, such as a simple majority voting
procedure, because it takes into account the full probability
distribution for each patch [12].

2.6. SRH Semantic Segmentation of Skull Base Tu-
mors

We have previously developed a method for segmenting
SRH images using patch-level predictions [12, 13]. This
technique integrates a local neighborhood of overlapping
patch prediction to generate a high-resolution probability
heatmap. In a previous study, we implemented a 3-channel
(RGB) probability heatmap which included spatial informa-
tion for tumor, normal brain, and nondiagnostic predictions.
In this study, we used a novel technique that generated a
2-channel image with the predicted tumor class (eg, pitu-
itary adenoma or craniopharyngioma) as the first channel
(ie, red) and the most probable nontumor class (eg, normal
pituitary, normal brain, and nondiagnostic) as the second
channel (ie, blue). This method has an advantage in the set-
ting of skull base tumors by allowing the nontumor class
to vary depending on the surgical specimen. For example, it
will automatically produce a meningioma-normal dura mar-
gin heatmap based on the predicted meningioma diagnosis.

2.7. Data Availability

The data that support the findings of this study are avail-
able from the corresponding authors on reasonable request.

3. Results
3.1. Diagnostic Features of Skull Base Tumors

We first assessed the ability of SRH to effectively capture
the diagnostic features of normal skull base parenchyma
and skull base tumors. Figure 1A shows the general work-
flow for obtaining SRH images. Figures 2A-2C show the
SRH images of normal brain, anterior pituitary gland, and
skull base dura. Classic histological features are seen, in-
cluding neuronal cell bodies in gray matter, acinar histoar-
chitecture in pituitary gland, and dense collagen extracellu-
lar matrix in dura. Meningiomas, pituitary adenomas, and
schwannomas are the most common skull base tumors en-
countered (Figure 2D-2F). SRH captures spindle cell cytol-
ogy and Antoni histoarchitectural patterns in schwannomas,
monotonous hypercellularity in pituitary adenomas, and
meningioma whorls. Less common and malignant tumors
are shown in Figure 2G-2I. Wet keratin is well-visualized in
adamantinomatous craniopharyngiomas. Bubble, physalif-
erous cells are abundant in clival chordomas. Chondrocytes
embedded in a dense cartilaginous matrix are seen in skull
base chondrosarcomas.

3.2. Automated Classification of Skull Base Tumors
Using SRH

After determining that SRH can effectively capture the
diagnostic features in SRH images, we then trained our
CNN using the 3 representation learning methods (Figure
1B). All models were trained for 4 days and then tested
on our held-out multicenter data set (Table 1). We evalu-
ated our model at the patch, slide, and patient levels using
overall top-1 accuracy, top-2 accuracy, and mean class ac-
curacy. Using these metrics, the model trained using super-
vised contrastive representation learning had the best over-
all performance, with top scores in all 3 metrics. Our super-
vised contrastive model achieves a patient-level diagnostic
accuracy of 96.6% (114 of 118 patients) and a mean class
accuracy of 93.4%. These results outperformed our cross-
entropy model and significantly improved on our previous
results (Figure 3) [12]. An important finding was that the
metastatic tumor class was a major source of diagnostic er-
rors for the cross-entropy model. We believe that this repre-
sents the inability of cross-entropy to effectively represent
classes with highly diverse image features (eg, melanoma
vs adenocarcinoma vs squamous cell carcinoma).

3.3. Visualizing Learned SRH Representations

We aimed to qualitatively evaluate how effectively the
models represented our SRH images. We used a data visu-
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Patch Slide Patient
Acc Top 2 MCA Acc Top 2 MCA Acc Top 2 MCA

CE 0.830 0.930 0.822 0.871 0.951 0.899 0.915 0.958 0.931
SSL + Linear 0.599 0.781 0.567 0.769 0.894 0.772 0.831 0.924 0.824

SupCon + Linear 0.866 0.953 0.864 0.914 0.969 0.920 0.966 0.983 0.934
Table 1. Model Performances on Held-Out, Multicenter SRH Testing Set. The bold entries signifies the best performing model in each
metric. Acc, accuracy; MCA, mean class accuracy; CE, cross-entropy; SSL, self-supervised contrastive learning; SupCon, supervised
contrastive learning. Top 2, correct class was predicted first or second more probable.

Supervised cross-entropy loss Self-supervised contrastive loss Supervised contrastive loss

Figure 3. Automated intraoperative classification of skull base tumors. Confusion matrices for each of the 3 training strategies on our held-
out, multicenter, testing set. Supervised cross-entropy achieved an overall diagnostic accuracy of 91.5%. Most of the errors occurred in
the metastatic tumors class, with a class accuracy of 60.0%. Self-supervised contrastive learning (learning without class labels) performed
expectedly worse but still reached an accuracy of greater than 83%. Our top-performing model was trained using supervised contrastive
learning, with an overall accuracy of 96.6% and 2 errors in the metastasis class.

alization technique called t-distributed stochastic neighbor
embedding, which projects high-dimensional data onto a 2-
dimensional plane by preserving the local patterns in the
data. Data points with similar representations are located
in close proximity, forming discrete clusters. Compared
with cross-entropy or self-supervised contrastive learning,
the supervised contrastive model shows the most well-
formed clusters that match tumor diagnoses (Figure 4). The
most salient improvement is how much more effectively
the metastatic class is clustered; contrastive representation
learning explicitly enforces that the model learns image
features which are common to each tumor class, regard-
less of how diverse the underlying pathology may be (eg,
melanoma vs adenocarcinoma).

3.4. Detection of Microscopic Tumor Infiltration in
Skull Base Specimens

Using a patch-based classification method allows for a
computationally efficient whole-slide SRH semantic seg-
mentation method. SRH segmentation allows for improved

image interpretation by surgeons and pathologists by pro-
viding spatial information along with the predicted diagno-
sis (Figure 5). Moreover, regions of microscopic tumor in-
filtration can be automatically detected and highlighted in
SRH images. Tumor infiltration can be identified using the
patch-level predictions (Figure 6) [12, 13]. Importantly, de-
tection of meningioma infiltration into grossly normal dura
can improve extent of resection and potentially decrease re-
currence rates. Our model detected microscopic tumor in-
filtration during skull base meningioma surgery (Figure 7).
Some dural regions with contrast enhancement (ie, dural
tails) did not show evidence of microscopic tumor infiltra-
tion, whereas other dural regions with no enhancement had
clear evidence of meningioma involvement. These results
demonstrate both the feasibility and the importance of mi-
croscopic evaluation of meningioma tumor margins.

4. Discussion

In this study, we show that the combination of SRH and
AI can provide an innovative pathway for intraoperative
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Lymphoma

Metastasis

Pituitary adenoma
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Schwannoma

Pituitary gland

Normal brain

A B

C

Figure 4. Contrastive representation learning t-distributed stochastic neighbor embedding(tSNE) of classes. This is a tSNE plot of SRH
patch representations from convolutional neural networks trained using A, self-supervised contrastive, B, cross-entropy, and C, supervised
contrastive loss functions. Each point represents a single SRH patch randomly sampled from our testing set. Consistent with our diagnostic
accuracy results, discrete class clusters are most discernible in our supervised contrastive representations, including the metastatic tumor
class. Note that the tSNE algorithm does not depend on class labels, and the color coding is used to demonstrate that data clusters
correspond to tumor classes.

skull base tumor diagnosis and detection of microscopic tu-
mor infiltration. We were able to achieve a +5.1% boost
in diagnostic classification accuracy using contrastive rep-
resentation learning compared with our previous AI train-
ing methods using cross-entropy. The model effectively
identified regions of microscopy brain tumor infiltration and
tumor-normal margins in meningioma SRH images.

Over the previous decade, the applications of AI in clini-
cal medicine and neurosurgery have grown tremendously.
Humanlevel diagnostic accuracy for image classification
tasks has been achieved in multiple medical specialties, in-

cluding ophthalmology [18], radiology[19], dermatology
[20], and pathology [21, 22]. AI for intraoperative di-
agnostic decision support has been combined with mass
spectrometry [23, 24], optical coherence tomography [25],
infrared spectroscopy [26, 27], and Raman spectroscopy
[28, 29]. We believe that the combination of advanced
biomedical optical imaging and the latest discoveries in AI
has the potential to provide accurate and realtime decision
support for surgeons and pathologists.
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Heatmap overlay

SRH with overlay
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Figure 5. Automated detection of microscopic tumor infiltration. Whole-slide SRH image of grossly normal dura sampled after resection of
a tuberculum sellae meningioma. Microscopic tumor infiltration was detected by our training model, as shown by the predicted meningioma
heatmap over the entire whole-slide image. Most of the specimen is normal dura with the exception of several small regions of clear
meningioma infiltration. Our predicted heatmaps can be converted into a colored transparency overlay to be used when reviewing the
SRH images intraoperatively. Heatmaps provide spatial information and serve as an additional level of decision support for evaluating
intraoperative specimens.

4.1. Limitations

A limitation of our study is the limited subset of skull
base tumors, consisting of the most common skull base
tumors and the most common “look-a-like” lesions. We
aimed to determine whether, given a sufficient amount of

training data, we could develop an alternative diagnostic
system using SRH and AI. Because additional SRH training
data become available for rare tumors, future studies will in-
clude additional skull base tumor diagnoses. Our proposed
contrastive representation learning method is able to accom-
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Stimulated Raman Histology SRH with prediction overlay 

Figure 6. SRH semantic segmentation identifies tumor-normal margins and diagnostic regions. A, SRH image of a meningioma-normal
dura margin. Corresponding prediction heatmaps show excellent delineation of tumor regions adjacent to normal tissue. B, SRH image
of pituitary adenoma-normal pituitary gland margin. Clear region of monotonous, hypercellular pituitary adenoma adjacent to normal
acinar structure of the anterior pituitary gland. C, SRH image of a papillary craniopharyngioma. Although our model was not trained
on craniopharyngiomas, it is able to detect regions of tumor and discriminate them from nondiagnostic, acellular regions. Detection of
diagnostic regions in SRH images can aid in intraoperative interpretation of large and complex tumor specimens.
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Figure 7. Automated analysis of meningioma margins in the clinical setting. A, A patient with a skull base meningioma arising from the
floor of the middle fossa with an enhancing dural tail extending superiorly along the temporal lobe. Patient underwent a left pterional
craniotomy for tumor resection. Dural margins were sampled throughout the resection. B, AI analysis of dura sampled within the dural tail
superiorly did not identify microscopic tumor infiltration. C, Sampled specimen located adjacent to the dural attachment did show multiple
regions of microscopic tumor infiltration. D, Dense tumor was found infiltrating into the lateral cavernous sinus and was resectioned. E, A
patient with a left en plaque sphenoid meningioma causing significant hyperostosis and proptosis. F, Grossly normal dura sampled over the
frontal lobe showed dense regions of microscopic meningioma infiltration. G, Sphenoid wing dura showed classic psammoma bodies and
microcalcification. H, AI analysis of grossly and radiographically normal dura over the orbital roof detected microscopic tumor infiltration,
and the dura was resected up to the ipsilateral cribriform plate.

modate additional diagnostic classes without changing the
training methodology described here.

4.2. Future Directions

Future directions include moving beyond histopatholog-
ical diagnosis toward phenotypic and molecular characteri-
zation of brain tumors. The proposed model training tech-
nique is flexible, and data labels/model output can be easily
changed or extended to include tumor grade, proliferation
indices, and molecular diagnostic mutations. In addition,
access to fresh tumor specimens provides a unique opportu-
nity to develop optical imaging–based prognostic biomark-
ers that have the potential to predict response to treatment
(eg, immunotherapy) and long-term clinical outcomes bet-
ter than standard diagnostic methods alone.

5. Conclusion

Rapid intraoperative margin delineation in both benign
tumors and malignant skull base tumors, including chordo-
mas and sinonasal carcinomas, has the potential to improve
recurrence-free and overall survival. This study demon-
strated the general feasibility of using SRH and AI for the
detection of microscopic tumor infiltration in real time at the
surgical bedside. We applied these methods specifically to
meningiomas because intraoperative Simpson grading is at
risk for underestimating residual tumor, especially for grade
I and II meningiomas [6]. The proposed method may re-

duce residual tumor burden through rapid microscopic as-
sessment of meningioma specimens.
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